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Abstract	
  

This article reviews recent advances in microbiome studies: molecular, statistical, and 

graphical {techniques} to gather data on, model, and explore how microbial organisms affect our 

environments and ourselves. Microbiome studies are in transition from surveys of which 

microbes are present in natural environments to quantifications of their community diversity and 

models of their ecological functions. We review the last 24 months of progress in this sort of 

research, and anticipate where the next two years will take us. 

Introduction	
  

We live in a microbial world, with microscopic organisms filling discrete ecosystems in 

such environments as soil, lakes and oceans, the human gut or skin, and even computer 

keyboards. Though microbiota include eubacteria, archea, viruses, and microscopic eukaria, we 

will consider only bacterial examples in this paper.  Bacteria comprise most of the Earth’s 

biomass and richness (1). They dominate such ecological factors as carbon cycling, greenhouse 

gas emission, and oxygen production. 90% of the cells in a human body are bacterial, as are 99% 

of the gene transcripts (2). However, most of the microbial world has been inaccessible to us, a 

kind of biological “dark matter,” since we do not know how to culture over 97% of all bacteria, 

and since older cultivation independent microbial survey techniques such as TRFLP (Terminal 

Restriction Fragment Length Polymorphism), ARISA (Automated Intergenic Spacer Analysis), 

and gradient gel electophoresis have significant limitations.  “Next Generation Sequencing” 

technologies have enabled, for the first time, high-throughput microbial sampling (3). The 

ultimate objective of microbiome studies is to understand the richness, structure, and function of 

microbial communities in nature.  
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Current microbiome studies begin by extracting DNA from a sample of the microbiome 

under study, post-processing the sequences to measure how many representatives of distinct 

populations (species, ecological functions, or other properties of interest) were observed in the 

sample, and then estimating a model of the original community. It is problematic to define a 

“microbiome”, though for working purposes we take it to be a well-defined patch of an 

ecosystem, such as all bacteria in a prescribed sector of the ocean, all bacteria from a specific 

body part of all humans, or all viral particles in the gut of a particular pig. We use microbial 

ecology conventions rather than statistical ones, so that a “population” is a collection of all 

organisms of a given species, a “community” is a collection of “populations” that share a specific 

ecosystem, and a “sample” is a physical extract from a given microbiome.  

Ambitious projects are underway to catalogue microbial life for the entire Earth (4), the 

ocean (5), and the human body (6). Surveys of transcriptomes and entire genomes have revealed 

more than half of all known protein sequences. Existing methods for estimating richness and 

community structure from observed samples are becoming more refined, improving model 

estimation, confidence quantification, and comparative methods (7-9). Finally, interactive, visual 

techniques are emerging with which to explore these complicated datasets prior to formal 

analysis. 

Different sequencing technologies have idiosyncratic strengths and weaknesses, beyond 

the scope of this review, which are not fully understood (10). Currently most metagenetic 

researchers use the Roche 454 sequencing platforms, and metagenomic/metratranscriptomic 

researchers also make extensive use of the Illumina GAIIx/HiSeq2000. The Roche 454 GS-FLX 

Titanium can now generate in excess of 1 million reads per run, which takes 23 hours, with read 

lengths up to 1000 bp (average around 500bp); the average run generates 750 Mbp of sequencing 
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data. The Illumina HiSeq2000 platform can now generate approximately 4 billion reads per run, 

which takes 10 days, with (usually) 150bp paired-end reads to create an approximately 250bp 

product; the average run generates 1 Tbp of sequencing data. The vendors reported these data at 

the time of this writing. Newer technologies, such as single molecule sequencing and smaller 

single lab devices are not widely used yet, and Sanger sequencing of large-insert libraries are still 

significant (11).  

Recent bioinformatics advances have significantly improved sequencing and assembly 

errors detection and correction. Several packages provide pipelines to bring these new algorithms 

into the lab (12,13). Bioinformaticists continue to improve algorithms for detecting specific types 

of error, such as chimeric sequences (14) and precise but inaccurate reads (15,16).  

This review surveys recent advances in efforts to measure the diversity of complete 

microbial communities. We limit references to recent publications that serve as jumping off 

points for further exploration, rather than a complete literature survey. First we discuss studies 

based on metagenetic data, from amplicons of single genes or genetic regions. Next, we review 

analyses of metagenomic and metatranscriptomic data, from shotgun sequencing of multiple 

genomes or genome transcripts. We then review advances and limitations in statistical 

techniques for diversity estimation. Then we discuss visual analytics, hypothesis generation by 

visually exploring these very large sequence datasets. Finally, we speculate on how microbiome 

studies may change in the next two years. 

Metagenetics,	
  amplicon	
  sequencing	
  

Hypervariable regions of individual, highly conserved genes, such as the small ribosomal 

subunit in non-eukaryotes, have served as proxies for species since Woese and Fox first used 

them to demonstrate that archea were a separate kingdom (17-19). With new sequencing 



Measuring the Microbiome 5 

technologies it became possible to sample all the 16S genes in a specimen without having to 

isolate and cultivate organisms in order to amplify DNA separately. By tagging specimens with 

molecular barcodes, labs can multiplex several treatments and controls into a single sequencing 

run, making it possible to survey and compare different microbiomes with very few sequencing 

jobs, dramatically shrinking the time between sample preparation and data analysis and the 

sequencing costs.   

The 16S rRNA gene remains a good, but far from ideal, molecular marker for microbial 

diversity. Hundreds of thousands of 16S rRNA genes have been fully sequenced and classified 

(13,20). As with all databases, ribosomal databases are growing larger and better, so analysis 

relying on them can only improve. The secondary structure of the 16S rRNA molecule is well 

characterized, at least for reference strains, which makes is possible to perform fast, secondary 

structure driven alignments (21,22). However, the diversity of the 16S gene does not always 

reflect phylogenetic relationships or metabolic potential that are known from other sources (23). 

Existing databases rarely classify below the family level, with results often reported as the order 

or even phyla level, even though different species or even strains are likely to have very different 

roles in microbiomes. Database sequences are surely biased samples of reality, since they assume 

at least that their targets are amenable to existing sequencing and annotation methodologies. 

They have been further biased by our fixation on potential pathogens and environmental 

contaminants. However, the 16S gene is likely to remain the most reliable and broadly applicable 

marker for some time. 

To date, sequencing technologies have limited 16S sampling to small fragments, rather 

than entire genes or genomes. Primers exist for hypervariable regions known as V1 through V9, 

of widely varying lengths and phylogenetic resolution (24). Different regions, and combinations 
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of regions, have different strengths and weaknesses (25-27). Historically, human microbiome 

surveys typically sample from regions near V3, while environmental surveys often sample from 

regions near V6. As sequencing technologies and protocols improve, projects are sequencing 

longer regions, such as V3-V5 (from the beginning of V3 to the end of V5) or V6-V9 (from V6 

to V9). Eventually, it may become routine to use the entire 16S gene, multiple marker genes, or 

even entire genomes. 

There are two types of algorithms for inferring microbiome diversity and structure from 

“clean” sequences, and both have improved greatly in the last two years.  

Clustering methods group sequences by similarity, computing statistics from the number 

and size of clusters. Clustering methods are biased by how one measures similarity and what 

similarity threshold one uses (25,28). Older distance clustering methods begin by computing 

similarities for all pairs of sequences, producing massive distance matrices. Newer algorithms 

compute clusters on the fly, requiring far less computer memory. Clusters are often called 

Operational Taxonomic Units (OTUs), a term borrowed from systematics, though they represent 

sequence similarity, which may no reflect organismal phylogeny or functional diversity. Recent 

studies have shown that, in general, average neighbor clustering (usually at a 97% similarity 

threshold) following single linkage clustering (usually at a 98% similarity threshold) works 

better for estimating community diversity than alternatives (16). UNIFRAC algorithms estimate 

phylogenetic divergence as a similarity measure, providing the best current method for 

estimating between-population (so called beta) diversity(29). Very few algorithms exist that 

rigorously fit statistical models to sequence data in order to estimate microbiome structure (see 

below).   
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Classification methods, on the other hand, estimate microbiome diversity using existing 

sequence databases(13,20,30). Increasingly sophisticated algorithms, such as Bayesian inference, 

match experimental sequences to those in existing databases, which are continually 

updated(13,31). Classification methods help with research projects where it is important to know 

more than the diversity of a microbiome, such as the number of organisms likely to be related to 

potential pathogens.  They will improve over time with rapidly improving databases. However, 

they suffer from the very small number of sequenced organisms, relative to what is in nature. 

And many organisms in the databases are still unclassified, having been recalcitrant to current 

taxonomic methods. (25,32) 

Metagenomics/Metatranscriptomics	
  

Figure 1. Microbial Assemblage Prediction (MAP - Larsen & Gilbert, Nature Methods, Submitted) and 

Predicted Relative Metabolite Turnover (PRMT - Larsen, Microbial Informatics and Experimentation, 2011) 

use environmental parameters to predict how microbial community structure will change in response to 

relative turnover of over 1000 metabolites in the ecosystem. 
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Researchers use metagenomic and metatranscriptomic sequencing to explore the 

functional and expressed potentials of microbial communities. Most studies have performed 

extensive sequencing of bacterial communities (33). But viral (34) and eukaryotic (35) 

communities have also been studied. Indeed, recent metagenomic data analysis may have 

discovered a fourth domain of life (36). 

The difficulty of assembling and annotating the data, due to short read lengths, has been 

the primary challenge to analyzing high throughput metagenomic/metatranscriptomic data (37). 

Assembly is important for the reconstruction of genes and operons for functional assignation and 

improved annotation of taxonomy (38), but also for re-assembly of whole genomes from 

metagenomic DNA (39). Independently of assembly problems, functional annotation of function 

is a difficult problem, compounded by the sheer quantity of sequence data. Consequently, 

automated annotation has become routine, with little or no manual assessment of accuracy (40). 

One of the most appropriate ways of defining the accuracy of assembly and annotation of 

metagenomic data is to use in silico simulated data from fragmented genomes (41) or actual 

fragmented genomic DNA from known organisms (42). 

Nonetheless, comparative metagenomics remains one of the most powerful ways to 

explore gene distribution across different ecosystems (43). Several tools and technologies exist 

for comparing functional community dynamics across different metagenomic datasets (44). 

Current techniques are limited by difficulties contextualizing sequencing data with 

environmental metadata from the target ecosystem (45).  However, techniques are being 

developed to improve analyses, once environmental metadata about the niche space in which the 

community was structured is available (46). 
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It is possible to model complex community dynamics in relation to the chemical and 

physical dynamics of the ecosystem (Figure 1), even without exhaustive sequence and 

environmental data. For example, tools exist to derive the abundance of gene/transcript 

fragments annotated to known enzyme activities from metagenomic and metatranscriptomic data 

(46). Tools are under development to predict how bacterial community structure will respond to 

relative changes in the consumption or production of these metabolites, given metagenetic data 

for the community (Microbial Assemblage Prediction (MAP) algorithm: Larsen & Gilbert, 

Nature Methods, In submission).  

Statistics	
  for	
  diversity	
  estimation	
  

The statistical challenges for microbiome studies are to estimate population richness and 

diversity, model community structure, quantify uncertainty, and compare estimates rigorously 

(47). Most current techniques begin with frequency count data, which groups observations into 

bins and report the number of members of each bin.  

There are two main approaches to richness estimation from count data. The classical or 

frequentist approach is better represented in both the literature and in available software. 

Coverage-based nonparametric estimators like Chao and ACE are popular, being simple to 

compute, and are available in most metagenetic bioinformatics packages such as Mothur and 

QIIME (12,48). But they are known to be biased downward in high-diversity situations, and to 

behave erratically when outliers are present (47). Recently more stable but computationally 

intensive parametric mixture models have been introduced. Both types of estimate are available 

in a single package, CatchAll (7).  Further, CatchAll computes several different estimates and 

returns a ranked comparison of the “best” analyses for a given dataset.  



Measuring the Microbiome 10 

The Bayesian approach, by contrast, begins with a prior probability distribution that 

represents what is known or believed about the diversity before collecting any data.  Using 

Bayes’ Theorem, this approach then derives a posterior distribution using the observed data, 

which yields the final estimate of diversity along with error terms and confidence intervals. 

There are two ways to define the prior. In objective or noninformative Bayesian analysis one 

minimizes the amount of information in the prior so that it influences the end result as little as 

possible; while in subjective or informative Bayesian analysis the prior expresses the 

experimenter’s beliefs about the diversity, or weights the results according to known factors that 

are unrelated to the observed data. Both have been studied in the diversity estimation literature, 

but the objective Bayesian approach is more widely accepted (49,50). Indeed it promises to be 

statistically and computationally stable and flexible, and may well be a strong competitor to the 

frequentist methods. But at present there is no simple and generally accessible Bayesian diversity 

estimation software, so we have less applied experience than for the classical approach. 

Recently, statistical methods have been developed that adjust estimates according to 

patterns in or assumptions about the frequency count data. For example, the successive ratios of 

frequencies (the number of doubletons divided by the number of singletons, tripletons divided by 

doubletons, etc.) have known statistical properties, which led to a new estimation method 

(available in CatchAll) (51).  Another example incorporates the suspected unreliability of low 

frequency counts into diversity estimates. Recent analyses of artificially constructed 

communities with known diversity and structure indicate that existing methods may 

systematically lead to inflated low frequency counts. Strategies to address such biases include: (i) 

using a Bayesian prior weighted toward lower diversity values; (ii) reporting lower bounds rather 

than direct estimates for the total diversity; (iii) statistically separating the projected population 
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into low and high-diversity components and deleting or downweighting the latter; and (iv) by 

pooling low frequency counts up to some cutoff (say, the singletons and doubletons) and re-

estimating the total diversity from these left-censored data (52). All of these strategies are 

statistically feasible, although not all have been implemented in software (CatchAll includes (ii) 

and (iii)), and this remains an area of current research. 

The next logical step is to move from estimating the diversity of a single population to 

comparing diversity levels across two or more populations.  Given reliable richness estimates for 

individual communities, it is straightforward to make statistical comparisons of richness between 

microbiomes. It is considerably more challenging to quantify how much population structure is 

shared between two or more communities. One common metric for two communities is the 

Jaccard index, which is the ratio of the number of shared populations to the total number of 

populations observed. Other between population diversity metrics include  Sørensen, Bray-

Curtis, and Morisita-Horn (48). However, these formulae are often applied to compare observed 

samples rather than estimated communities, leading to statistically indefensible practices such as 

discarding data to “normalize” samples to the same size. What is lacking is between-population 

diversity metrics that account for both observed and unobserved populations. This appears to be 

a difficult statistical problem. Chao et al. provided a nonparametric estimator of the (population) 

Jaccard and Sørensen indices (8) but few other solutions have been proposed (53). 

Finally, microbiome studies need to model or predict richness and diversity using 

covariate data, such as observable biological, chemical, or other environmental variables. If the 

response or dependent variable is simply the (estimated) richness then standard statistical 

modeling techniques such as regression are appropriate. But modeling diversity and structure, 
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rather than mere not just richness, as a function of the predictors, requires techniques such as 

canonical correspondence analysis (9). 

Moreover, such analyses should be based on estimates of unobserved structure, rather 

than exclusively observed data, since substantial unobserved diversity is typical of microbial 

ecology studies. 

Visualizing	
  the	
  results	
  

Microbiome data are inherently high dimensional and complex. Suppose the goal of a 

project is to relate bacteria community structure at a particular body site to clinical observations. 

A typical data set might include a list of hundreds of bacterial species that are hierarchically 

organized into different groups, including genus, families, orders classes and phyla. This is 

further complicated with information about genes and pathways that are present in each of the 

bacterial species and with how these relate to clinical endpoints. The genomic information of the 

host, such as demographic data, patient specifics, and lifestyle data may also be important. The 

ultimate challenge is to put these many different layers of information together in a statistical or 

machine learning analysis to identify clinically useful patterns.  

Given this level of data complexity, it is important for the researcher to have tools with 

which to visualize and explore data. Visual interaction allows the researcher to critically explore 

the measurements themselves for quality control, for discovering patterns that lead to new 

hypotheses, and for interpreting results. Also, it is often desirable to communicate results 

visually to other scientists and clinicians.  However, it is challenging to choose the right 

visualization technique for the right type of data or information, given that there are so many 

information visualization methods (54). 
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 The close integration of computational analysis with visualization and human-computer 

interaction is an emerging discipline called visual analytics (55). This is distinguished from 

scientific visualization that focuses on the mathematics and physics of visualizing 3D objects, 

and information visualization that focuses on methods such as heat maps for showing high-

dimensional research results. What distinguishes visual analytics is the integration of data 

analysis with visualization methods such that data analysis can be launched directly from the 

visualization and the visualization adjusted in response to the data analysis. Computer hardware 

technology that makes it easy for the user to interact with the software, such as the Microsoft 

Surface Computer or the Apple iPad, enable visual analytics. All of this combined with a 3D 

visualization screen or wall provides a modern visual analytics discovery environment that 

immerses the user in their data and research results.  

 Several different information visualization methods have been useful for the analysis of 

microbiome data. For example, heat maps, introduced more than fifty years ago (56), have 

become a popular and useful for visualizing population structure in large microbial communities 

and for clusters of expression patters in genomics (57). A heat map consists of a 2D grid or 

matrix of colored squares where each square represents an observation of a random variable and 

the color of the square is proportional to the value of that observation. It is common to order the 

squares along the two axes with additional categorical data such as bacterial phyla and tissue 

type. For example, a recent study by Wu et al. explored the relationship between long-term 

dietary patterns and gut microbial enterotypes (58). This study used Spearman correlations to 

estimate the association between different nutrients and bacterial genera in 98 healthy volunteers. 

It summarized the results with a heat map, where each column represented different taxa, each 

row represented a different nutrient and the color of each square represented the magnitude of 
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the correlation, with darker red representing stronger positive correlations and darker blue 

representing stronger negative correlations. The authors also performed a hierarchical cluster 

analysis to organize the results into visual patterns that were easier to interpret. For example, the 

authors found that fat-related nutrients tended to be more similar in the correlations across taxa 

than other nutrient groups. In addition to heat maps, the authors also used principal components 

analysis (PCA) to identify linear combinations of gut microbial taxa associated with long-term 

diet. They used 2D and 3D scatterplots to identify clusters of patients defined by the first two or 

three principal components. This type of multivariate analysis is inherently visual and can prove 

to be a very useful information visualization tool for microbiome analysis. 

 Visual analytics, combining information visualization with human-computer interaction, 

is emerging as a useful tool for microbiome visualization and analysis. For example, Moore et al. 

integrate and visualize several additional dimensions of information by adding a z-axis to a 

traditional heat map (59). In this study, the authors implemented the 3D heat map using a 

commercial 3D video game engine called Unity 3D. The video game engine makes it possible to 

interact with the 3D visualization as you would in a video game. This open-source software 

combines human-computer interaction and visualization in a 3D Heat Map in a way that is not 

possible with common analysis tools such as Microsoft Excel or R. The second example comes 

from a human microbiome study of (60). Here, the authors use movies to visualize the temporal 

variation in the vaginal microbiome of 396 women from different racial groups, and work is 

underway to incorporate temporal and patient metadata. The use of movies allows users to 

interact with the visualization in a way that is not possible with static images. 



Measuring the Microbiome 15 

Where	
  things	
  are	
  going	
  

Sequencing technologies will continue to improve in both accuracy and throughput, and 

benchtop sequencers will become standard equipment in individual labs. Metagenetics will rely 

more on whole gene samples, removing the bias associated with selection a gene fragment. In 

particular, complete 16S DNA sequences will become standard for microbial systematics. 

However, we anticipate that metagenetics will become a quick screening technique, preliminary 

to more detailed metagenomic studies. 

The ideal dataset for genomic-based microbial studies of any given ecosystem, including 

those associated with animals, such as humans, is a complete genome for every single organisms 

at a given time in the ecosystem. These data would make it possible to completely characterize 

the genetic diversity of the system, to generate comprehensive models of microbial metabolism 

and interactions, and to design experiments that manipulate the system by adding or removing 

specific populations. The most obvious route towards this is single genome isolation and 

sequencing, which is currently performed by isolating single microbial cells and sequencing 

them directly (61) to identify the functional potential of the organisms, and to design 

economically feasible, rather than exhaustive, shotgun metagenomic.  

But the ultimate objective is to build complete, predictive models of how microbiomes 

interact and how they respond to stimuli such as climate change, agricultural practices, and 

disease(62). Parameterizing such complex models will continue to require metatranscriptomic 

and other “omic” studies of the expressed capability of community members  (33,63,64). Using 

techniques such as autonomous collection and preservation of microbial communities for 

metatranscriptomic analysis combined with quantitative characterization of transcription in 
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metatranscriptomic data we may start to see a revolution in our ability to resolve functional 

capability(65,66). 

Statistical techniques are likely for improved parametric model estimation, error and 

uncertainty bounds, and comparing diversity statistics. These are likely to include refined 

techniques for censoring unreliable data, without first characterizing where the noise comes 

from. We also anticipate that software tools will become more available for sophisticated 

analyses, but that interpreting results will still require statistical expertise.  

Information visualization and visual analytics will become standard parts of microbiome 

research workflows. Integration into statistical computing software such as R is already 

underway, so that analyses can be launched directly from the visualization applications. The 

ability to launch statistical analyses directly from the visualization environment opens the door to 

making discoveries that are inspired by visual cues rather than pre-conceived hypotheses that are 

dependent on existing knowledge. Perer and Shneiderman (2009) present design guidelines for 

evaluating visual analytics software(59). 
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